KEMAMPUAN ARTIFICIAL INTELLIGENCE TERHADAP PENDETEKSIAN FRAUD: STUDI LITERATUR

DOI:

https://doi.org/10.29303/akurasi.v7i1.488

Penulis

  • Ervian Ridho Mawlidy Universitas Airlangga
  • Rieswandha Dio a:1:{s:5:"en_US";s:21:"Universitas Airlangga";}
  • Like Lorensa Universitas Airlangga

Kata Kunci:

Artificial Intelligence, Kecurangan Keuangan, Audit, Metodologi Audit, Era Digitalisasi

Abstrak

Penelitian ini bertujuan untuk mengetahui peran Artificial Intelligence (AI) dalam mendeteksi kecurangan keuangan pada audit.  Ketika auditor semakin mengandalkan teknologi AI untuk memproses data dalam jumlah besar, memastikan kerahasiaan dan integritas data tersebut menjadi sangat krusial. Penelitian dilakukan dengan mengumpulkan 16 artikel dari jurnal bereputasi yang diterbitkan tahun 2018-2024, yang diklasifikasikan berdasarkan metode yang digunakan dan hasil penelitian. Metode Systematic Literature Review (SLR) digunakan untuk memeriksa hasil, metodologi, topik/tema, rekomendasi, dan keterbatasan dari artikel yang dipublikasikan. Hasil analisis memberikan bukti bahwa Artificial Intelligence (AI) memiliki dampak yang positif dalam mendeteksi kecurangan keuangan pada audit. Bentuk AI yang telah diimplementasikan pada perusahaan, yaitu Artificial Neural Network (ANN) dan Machine Learning. Terlepas dari potensi manfaatnya, implementasi AI dalam audit bukan tanpa masalah.  Masalah privasi, keamanan data, dan pertimbangan etis meliputi penggunaan informasi sensitif merupakan faktor krusial yang harus ditangani.

Unduhan

Data unduhan belum tersedia.

Referensi

Abdullah, A. A. H., & Almaqtari, F. A. (2024). The impact of artificial intelligence and industry 4.0 on transforming accounting and auditing practices. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 1–20. https://doi.org/10.1016/j.joitmc.2024.100218

Agustina, S., & Wandansari, R. P. (2023). Seberapa efektifkah artificial intelligence dalam fraud detection pada masa COVID-19: Systematic Literature Review. Jurnal Aplikasi Akuntansi, 8(1), 118–130. https://doi.org/10.29303/jaa.v8i1.254

Ajzen, I., & Martin Fishbein. (1980). Understanding Attitudes and Predicting Social Behavior. Prentice Hall.

Akmaluddin, M., & Dewayanto, T. (2023). Systematic literature review: Implementasi artificial intelligence dan machine learning pada bidang akuntansi manajemen. Diponegoro Journal Of Accounting, 12(4), 1–11.

Arens, A. A., Elder, R. J., Beasley, M. S., & Hogan, C. E. (2017). Auditing and Assurance Services An Integrated Approach Sixteenth Edition. Pearson Education Limited.

Columbus, L. (2019, July 1). AI is Predicting The Future of Online Fraud Detection. Forebes. Diakses pada tanggal 17 Februari 2024. https://www.forbes.com/sites/louiscolumbus/2019/08/01/ai-is-predicting-the-future-of-online-fraud-detection/?sh=42b63ca874f5

Cressey, D. R. (1953). Other People’s Money: A Study in The Social Psychology of Embezzlement. Free Press.

Davis, F. (1986). A Technology Acceptance Model for Empirically Testing New End User Information Systems: Theory and Result [Unpublished Ph.D Disertation]. Sloan School of Management, Massachusetts Institut of Technology (MIT).

Fedyk, A., Hodson, J., Khimich, N., & Fedyk, T. (2022). Is artificial intelligence improving the audit process? Review of Accounting Studies, 27, 938–985. https://doi.org/10.1007/s11142-022-09697-x

Handoko, B. L., & Soepriyanto, G. (2018). Merunut Kasus SNP Finance & Auditor Deloitte Indonesia (1). Accounting Binus.

Hidayatullah. (2023).Perkembangan Teknologi Arificial Intelligence (AI) dan Audit. Salemba Empat.

Korol, V., Dmytryk, O., Karpenko, O., Riadinska, V., Basiuk, O., Kobylnik, D., Moroz, V., Safronova, O., Alisov, E., & Mishchenko, T. (2022). Elaboration of recommendations on the development of the state internal audit system when applying the digital technologies. Eastern-European Journal of Enterprise Technologies,1(13-115),39–48.

Kumar, G., Muckley, C. B., Pham, L., & Ryan, D. (2018). Can alert models for fraud protect the elderly clients of a financial institution? Financial Economic Network Electronic Paper Collection, 1–26. https://doi.org/10.1080/1351847X.2018.1552603

Lame, G. (2019). Systematic literature reviews: An introduction. Proceedings of the Design Society: International Conference on Engineering Design, 1(1), 1633–1642. https://doi.org/10.1017/dsi.2019.169

Malali, A. B., & Gopalakrishnan, S. (2020). Application of artificial intelligence and its powered technologies in the Indian banking and financial industry: An Overview. IOSR Journal of Humanities and Social Science, 25(4), 55–60. https://doi.org/10.9790/0837-2504065560

Mohanty, B., Aashima, & Mishra, S. (2023). Role of artificial intelligence in financial fraud detection. Academy of Marketing Studies Journal, 27(4), 1–15.

Muawanah, A., Adawiyah, D., Maisarah, I., Rafli, A. A. M., & Widiastuti, N. P. E. (2022). Perilaku auditor menyikapi munculnya artificial intelligence dalam proses audit. Jurnal Publikasi Ekonomi dan Akuntansi, 2(1), 52–60. https://doi.org/https://doi.org/10.51903/jupea.v2i1.152

Rachmawati, A. M., Noviandari, T., Septian, M. R. E., & Ratnawati, T. (2023). Studi literatur kecerdasan buatan untuk audit: Kolaborasi atau ancaman bagi profesi auditor? JURA: Jurnal Riset Akuntansi, 1(3), 75–82. https://doi.org/10.54066/jura-itb.v1i3.396

Rumahorbo, H. H., & Dewayanto, T. (2023). Pengaruh transformasi digital: Kecerdasan buatan dan internet of things terhadap peran dan praktik audit internal: Systematic Literature Review. Diponegoro Journal of Accounting, 12(4), 1–15. http://ejournal-s1.undip.ac.id/index.php/accounting

Sadgali, I., Sael, N., & Benabbou, F. (2019). Performance of machine learning techniques in the detection of financial frauds. Procedia Computer Science, 148, 45–54. https://doi.org/10.1016/j.procs.2019.01.007

Seethamraju, R. C., & Hecimovic, A. (2020). Impact of artificial intelligence on auditing - An exploratory study. Americas Conference on Information Systems, 1–10. https://doi.org/10.1177/03128962221108440

Septiriana, R., Rheno Widianto, S., & Darma, P. E. (2024). Application of artificial intelligence in the prevention of fraud in financial statements. Jurnal Ekonomi, 13. https://doi.org/10.54209/ekonomi.v13i01

Siladjaja, M., Anwar, Y., & Djan, I. (2022). The impact of real manipulation and tax management on future market value: An artificial intelligence simulation of high earnings quality. ACRN Journal of Finance and Risk Perspectives, 11(1), 33–54. https://doi.org/10.35944/jofrp.2022.11.1.003

Soeprajitno, R. R. W. N. (2019). Potensi artificial intelligence (AI) menerbitkan opini audit? Jurnal Riset Akuntansi Dan Bisnis Airlangga, 4(1), 560–573. https://doi.org/10.31093/jraba.v4i1.142

Sood, P., Sharma, C., Nijjer, S., & Sakhuja, S. (2023). Review the role of artificial intelligence in detecting and preventing financial fraud using natural language Processing. International Journal of System Assurance Engineering and Management, 14(6), 2120–2135. https://doi.org/10.1007/s13198-023-02043-7

Yadiati, W., Rezwiandhari, A., & Ramdany. (2023). Detecting fraudulent financial reporting in state-owned company: Hexagon theory approach. Jurnal Akuntansi: Kajian Ilmiah Akuntansi, 10(1), 128–147. https://doi.org/10.30656/jak.v10i1.5676

Zemánková, A. (2019). Artificial intelligence and blockchain in audit and accounting: Literature review. Wseas Transactions on Business and Economics, 16, 568–581.

Zhou, Y., Li, H., Xiao, Z., & Qiu, J. (2023). A User-centered explainable artificial intelligence approach for financial fraud detection. Finance Research Letters, 58, 1–10. https://doi.org/10.1016/j.frl.2023.104309

Diterbitkan

2024-06-24

Cara Mengutip

Mawlidy, E. R., Dio, R., & Lorensa, L. (2024). KEMAMPUAN ARTIFICIAL INTELLIGENCE TERHADAP PENDETEKSIAN FRAUD: STUDI LITERATUR. Akurasi : Jurnal Studi Akuntansi Dan Keuangan, 7(1), 89–104. https://doi.org/10.29303/akurasi.v7i1.488